Chemistry Letters 1998 1117 ## Formation and Hydrogenation of the Nitrogen Stored in Iron-based Intermetallic Compounds Ken-ichi Machida,* Masahiro Ito, Kazuhiro Hirose, and Gin-ya Adachi* Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Received July 29, 1998; CL-980575) From a study on nitrogenation and hydrogenation characteristics of Laves phase-type intermetallic compound (TiFe₂) and its surface modified composite (Ru/Al₂O₃/TiFe₂), nitrogen molecule was found to be converted to ammonia via formation of TiFe₂N_x at ambient pressure. A series of rare earth intermetallic compounds (R_2Fe_{17}) provide interstitial metal nitrides ($R_2Fe_{17}N_x$),^{1,2} as well as metal hydrides, in which the atomic nitrogen is partly released from the crystal lattices by heating in Ar.³ Meanwhile, Laves phase-type intermetallic compounds, M'M"₂ (M'=Ti and Zr; M"=V, Cr, Mn, and Ni), also interstitially absorb significant amounts of H_2 to form the corresponding metal hydrides such as M'M"₂ H_x .⁴ In this paper, nitrogenation and hydrogenation of TiFe₂ were made to study the absorption-desorption property of nitrogen via formation of the metal nitride. The Laves phase-type intermetallic compound TiFe $_2$ was prepared from an appropriate amount of Ti (>99.9%) and Fe rods (>99.95%) on an arc melting apparatus, and ground to a particle size below 50 μ m, after annealing in He at 1373 K, as well as TiFe. A part of the TiFe $_2$ powder was impregnated with Al(C₂H₅)₃ and Ru₃(CO)₁₂ solutions as precursors to prepared Ru/Al₂O₃/TiFe₂ composite powders by subsequent treatments: oxidation in air at room temperature for Al₂O₃ and reduction in H₂ at 673 K for Ru metal, according to methods. 5.6 Surface area of them was measured using to a conventional BET method, together with Ti (>99.0%) and Fe (>99.9%) powders: TiFe₂, TiFe, and Ru/Al₂O₃/TiFe₂, 0.15-0.30 m²g⁻¹; Ti, 0.05 m²g⁻¹; Fe, 0.17 m²g⁻¹. The TiFe2, TiFe, Ti, and Fe powders (1.0 g) was individually charged in conventional fixed-bed quartz tube reactors (12 mm o.d.), and nitrogenated at 723 or 773 K in a stream of NH₃-H₂ mixed gas (molar ratio=1:1) or N₂ at a space velocity (SV) of 4000 h-1, followed by a subsequent hydrogenation in H2 under the same SV condition at 723 K. Nitrogen amounts regenerated from the metal nitrides were evaluated from differences between the nitrogen contents of nitrogenated and hydrogenated powders, which were measured on a nitrogen/oxygen analyzer (Horiba, EMGA 550). Structural modifications were checked by X-ray diffraction (XRD) patterns (CuKα radiation). Nitrogen species eluted from the metal nitrides during the hydrogenation were analyzed on a mass spectrometer, and the resulting ammonia was determined by monitoring a pH value of H₂SO₄ aqueous solution in a glass trap for the H₂ elution gas every the nitrogen absorption-desorption cycle. Figure I shows XRD patterns of TiFe $_2$ and TiFe $_2$ N $_x$ heated in the NH $_3$ -H $_2$ mixed gas or H $_2$ at 723 K, respectively. The XRD pattern of TiFe $_2$ was completely assigned to the Laves phase-type structure (C14, hexagonal, P6 $_3$ /mmc), 7a but the crystal lattice was transformed to an amorphous one by the nitrogenation. Also, Fe partly converted to an interstitial compound as assigned to $Fe_3N.^{7b}$ However, TiFe and Ti never showed such modification and, furthermore, the nitrogenation in N_2 at 773 K, no structural modification was observed even on TiFe₂ and Fe. Figure 1. XRD patterns for the TiFe₂ and TiFe₂N_x powders: a) as obtained; b) nitrogenated in the NII₃-H₂ mixed gas for 3 h at 723 K; c) hydrogenated in H₂ for 3h at 723 K. Since the nitrogen species eluted by H₂ was completely assigned to NH₃ from mass spectrum signals, most of the nitrogen stored in the crystal lattices as metal nitrides was concluded to generate NH₃. Nitrogenation and hydrogenation (nitrogen absorption-desorption) properties of TiFe₂, TiFe, Ti, and Fe powders in the streams of NH₃-H₂ mixed gas or N₂ and H₂ were summarized in Table 1. It is noted that the amounts of ammonia calculated based on the compositional analysis values of the nitrogenated and hydrogenated powders of TiFe₂ (26.3 mmol cm⁻³) are larger than a calculated one for a high-pressure (15MPa) nitrogen container (12.2 mmol cm⁻³), where these mole values express the amounts of ammonia generated from 1.0 cm³ of the metal nitride or the nitrogen container. The capacity to generate ammonia was still maintained at the high level even after 11th cycle (26.6 mmol cm⁻³). However, TiFe hardly absorbed nitrogen and the amount of resulting ammonia was only 3.13 mmol cm⁻³, although hydrogen is efficiently absorbed in the crystal lattice.⁸ Also, the nitrogen **Table 1.** Nitrogen absorption-desorption characteristics of $TiFe_2N_x$, TiN_x , FeN_x , and $Ru/Al_2O_3/a$ - $TiFe_2N_x$ | Metal
nitrides | Cycle
number | Nitrogen content (x) | | Generated | |-------------------------------------|-----------------|--------------------------|--------------|--| | | | Nitrogenated | hydrogenated | ammonia ^a
(mmol cm ⁻³ (M.N.)) | | (A) Nitroge | nation i | n the NH ₃ -H | 2 mixed gas | at 723 K for 3 h | | TiFe ₂ N _x | 1 | 1.48 | 0.93 | 26.3 | | | 11 | 1.50 | 0.94 | 26.6 | | TiFeN _x | 1 | 0.06 | 0.01 | 3.13 | | TiN _x | 1 | 0.073 | 0.072 | 0.10 | | FeN _x | 1 | 0.14 | 0.01 | 18.4 | | (B) Nitroge | nation i | n N ₂ at 773 | K for 3 h | | | Ru/Al ₂ O ₃ / | 1 | 1.57 | 1.51 | 2.57 | | a-TiFe ₂ N, | | 1.60 | 1.55 | 2.14 | | | 5 | 1.72 | 1.67 | 2.14 | ^a Calculated per 1.0 cm³ of metal nitrides from their compositional analysis values. The NH $_3$ amount generated from 1.0 cm³ of nitrogen container charged at 15 MPa is evaluated to be 12.2 mmol cm⁻³ if the N $_2$ gas might be converted to NH $_3$ at 100% of yield. storage capacity of Ti was negligible, but the Fe powder absorbed a significant amount of nitrogen as Fe $_3N$, providing 18.4 mmol cm $^{-3}$ of ammonia, although the generated ammonia from Fe $_3N$ was still less than those from TiFe $_2N_\chi$. This good nitrogen capacity is due to the formation of interstitial metal nitrides Fe $_3N$ in a similar manner as the rare earth-iron metal nitrides such as $R_2Fe_{17}N_\chi,9$ On the other hand, the nitrogenation using N_2 scarcely took place even on TiFe₂. However, once the TiFe₂ powder was coated with a Ru/Al₂O₃ catalyst and preliminary nitrogenated in the NH₃-H₂ mixed gas to transform to the amorphous phase (a-TiFe₂), nitrogen was reversively absorbed and desorbed over the Ru/Al₂O₃/a-TiFe₂ composite powder by heating in N₂ and H₂, resulting in 2.57 mmol cm⁻³ of NH₃, although the amount was considerably small compared with the value observed in the cycle of NH₃-H₂ mixed gas and H₂. The determined amount of NH₃ fairly agreed with a value calculated from the nitrogen content of metal nitrides (see Table 2). The considerable decrease in the ammonia amount is due to the partial oxidation of TiFe₂ itself in the process to form Al₂O₃ from Al(C₂H₅)₃ in air. The oxygen **Table 2.** Determination of the ammonia generated from the $Ru/Al_2O_3/a$ - $TiFe_2N_x$ composite powder at the 2th cycle as shown in Table 1 | Analysis | Nitroger | Generated
ammoniab | | |---|----------|-----------------------|--------------------------------| | | Before | After | (mmol cm ⁻³ (M.N.)) | | pH valuea
(aq.H ₂ SO ₄) | 3.03 | 8.01 | 2.23 | ^a Measured on the H₂SO₄ aqueous solutions before and after introducing the H₂ elution gas from the metal nitride. ^b Evaluated from changes of pH and x values. content was ~ 0.2 wt% for TiFe₂, but ~ 2.4 wt% for Ru(0.02 wt%)/Al₂O₃(~ 1.5 wt%)/TiFe₂). In conclusion, the amorphous interstitial metal nitride, a-TiFe₂N_x, is responsible for the high capacity to regenerate NH₃, nitrogen molecule is fixed in the Ru/Al₂O₃/TiFe₂ composite material even at ambient pressure. This work was partly supported by Grant-in-Aid for Scientific Research Nos. 07242245, 08232249, 09218234, and 09874143 from the Ministry of Education, Science, Sports, and Culture of Japan. ## References and Notes - 1 J. M. D.Coey and H. Sun, J. Magn. Magn. Mater., 87, L251 (1990). - 2 T. Iriyama, K. Kobayashi, and H. Imai, European Patent, 0-369-097-A1 (1989). - 3 T. Iriyama, T. Katsumata, and R. Mitsui, Trans. Mat. Res. Soc. Jpn., 14B, 1063 (1994). - 4 "Hydrogen in Intermetallic Compounds I and II," in "Topics in Applied Physics," ed by L. Schlapbach, Springer-Verlag, Tokyo (1992), Vol. 67. - 5 Y. Kadowaki and K. Aika, J. Catal., 161, 178 (1996). - 6 C. C. Nagel, J. C. Bricker, D. G. Alway, and S. G. Shore, J. Organomet. Chem., 219, C9 (1981). - 7 "Binary Alloy Phase Diagrams," ed by T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Amer. Soc. Met., Metals Park (1986), Vol. 1, a) TiFe₂, pp.1117-1119; b) Fe₃N, pp.1079-1083. - L. Zaluski, S. Hosatle, P. Tessier, D. H. Ryan, J. O. Ström-Olsen, M. L. Trudeau, and R. Schultz, Z. Phys. Chem., 183, 45 (1994). - 9 K. Machida, K. Hirose, H. Nakajima, and G. Adachi, to be published.